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NEW INTEGRABLE CASES OF EULER'S EQUATIONS

0.I. BOGOYAVLENSKII

It is proved that the equations of rotation of a solid fixed at its centre
of mass in a Newtonian field of an arbitrary fairly distant object are
completely Liouville integrable. The integrable case of rotation of a
magnetized solid in a uniform gravitational and magnetic field, which
generalizes the Kovalevskaya case, is indicated.

1. The Liouville integrability of the rotation of an arbitrary solid fixed
at its centre of mass in a Newtonian field of an arbitrarily distant object.
The investigation of the rotation of an arbitrary solid T fixed at the centre O of its mass
in a Newtonian field of an arbitrary fairly distant object V reduces to the investigation of
the rotation of the solid T in a Newtonian field with an arbitrary uniform quadratic potential
/1, 2/. Until recently only a single case of this problem was known. In it the gravitational
field of the object V was axially symmetric (the axes passes through the point 0) and the
quadratic potential ¢ is equivalent to the potential ¢ = a (z!)?* Brun's problem /3/, see also
/1, 2, 4/). The equations which describe the rotation of a solid T reduce to the integrable
Klebsch problem for Kirchhoff's equations. It is shown below that this problem is, in the
most general case, completely Liouville integrable.

The equations of rotation of a solid 7T about a fixed point O are considered in a reference
system § rigidly attached to the solid. Let ¢ (2!, 2%, 2% be the Newtonian potential in the
stationary reference system F whose centre is at the point O, and a, f, ¥ be the three unit
vectors of the stationary system of coordinates in the reference system S. Let us deternine
the potential function

Ua,B.v) =S p(9) o ((r, 0), (. B). (¢, y)) drt dr2 dr® (1.1)
T

where p(r) is the density of the solid T at the point r. The equations of rotation of the
solid T in the Newtonian field with potential ¢ (!, 2%, 2’} in the reference system S have the
form :
M' =M x o -+ (0U/da) x a + (8U/3B) x B + (3U/dy) X ¥, (1.2)
a=ax0 f=PFpxo Y=rXo

where M, ® are the vectors of kinetic momentum and angular velocity, whose coordinates are
connected by the relations
3 3
Mi=21ik(”k¥ Iar——gp(r)(ﬁwz(r’)z—rir")dr‘drzdr’ (1.3)

k=1 T lam]

where I, are the components of the inertia tensor of the solid T in system S.

Theorem 1. The equations of rotation of an arbitrary solid around a fixed point O in a
Newtonian field with an arbitrary quadratic potential

3
@ (11, T2 .rﬂ:—i— Z aijx"xj (1.4)
is=1

are completely Liocuville integrable.

Note that Newtonian fields with a potential of the form (1.4) that satisfy the Laplace
equation Ag (z1, 22, 2% = 0, are subject to the condition a; 4+ ag + a3; = 0.

We select the unit vectors of the fixed reference system F that coincide with the principal
axes of the quadratic form and, after such a transformation, obtain 2¢ (z) = a,(z1)? + ay(x?)? +

ag(z%)2. The unit vectors of the reference system S are selected so that they coincide with
the principal axes of the inertia tensor, i.e. I, ==I,8;,. The potential function U (l.l) then
takes the form

2U = Uy — ay(I12,® + L0074 + Tyas?) — ay (I1fe? + £,8,% + (1.5)

I8 — as (I1vi2 + Lvs? + Isvs%), Up=(ay+a +ap)(ly + 1, +15)/2
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Taking advantage of the isomorphism of the vectors with components v in R® and the
skew symmetry (3 X 3} of matrices with elements V,, we have

3
B V= — 3 viey (1.6)
]

for which the vector product x X y becomes the commutator of the matrices [X, Y] = XY —YX.
After this isomorphism the matrices a,B,y,M,» correspond to the vectors a, B, v+ M, @,
and Egs.(l1.2) take the form

M =M, o] + ala, Ca + aCl + alB, Cp + BCl + (L.7
ag [y, Cy + ¥Cl
a =la, 0], p=1Ip, o, ¥ =Ily, al

where the matrix C has elements (= (27(J, + 1,4+ I,)—1)8;; and M, = Lo, j, k=1,2,3).
By virtue of (1.7) we have

(@) = la?, o], (B =Ip% o], (¥)" = 4% ol

We introduce the matrix u = a,02 -+ a,p? 4 agy? and use the obviocus identity [z, Cz + zC] =
[z2, Cl; from (1.7) we have the corollary

M =M, o] +lu, Cl, v =lu, o (1.8)

The matrices M and @ are skew symmetric, while the matrices u and C are symmetric.
Another derivation of (1.8) in a more general case is indicated in Sect.2,

Equations (1.8) are Euler equations in the adjoint space of the Lie algebra L', whose
elements | have the form ! = M + u, where M, u are three-dimensional matrices, and the
commutators M! = —M, u' = u are defined by the conditions

M, u) = Mu — uM, [My, M)} = MM, — MMy, lu;, upl =0 (1.9)

The action orbits X of the respective Lie group Gy and Ly'* are simplectic manifolds,
and V¢ =R® x S0(3) = T (SO(3)) is a bunch tangent ot the Lie group S0(3). The manifolds V¢
are defined by the conditions J;(u) = const, where j;(u) are the eigennumbers of the matrix
u, if A, = Ay 5= Ay, then orbit X = V& = RS X §2, and X = R® if A, = A, = A,. The Poisson
brackets of the functions on Ly'* are determined by the formulae
af o

or, 61j

s k
{4 §r= ) C1j Ty
i,k

(1.10)

where Cij"' are structural constants of the Lie algebra L," in basis z;. The Poissonbrackets
(1.10) on the submanifolds of V% are non-degenerate.
Equations (1.8) are of Hamiltonian form

J”|j.= {1”,']‘. H}, u,-j'——:-{u,-j, H} (1.11)

where the Hamiltonian is H=J,=Tr @2 M ¢ + u-C).
We will introduce a matrix B with elements B;; = I,[,1,1;7%0;;. System (1.8) has two supple-
mentary first integrals

Jo = Tr (2-1M% + Bu), J, = Tr (M2 + Bu?) (1.12)

The integrals J,, J,, J; are obviocusly functionally independent. By virtue of (1.1l) we
have J, = {J,, J;} = 0,J; = {J4 J,} = 0. Direct calculation shows that the Poisson bracket
{J,, J3} = 0, i.e. the three integrals Ji.Ja, Jg are in involution. Hence the Hamiltonian
system (1.8)-(1.11) is completely Liouville integrable on the six-dimensional simplectic
submanifolds of V®&. The trajectories of system (1.8)—(1.1l) are gquasiperiodic windings of
three-dimensional tori 7% in the space [ /* defined by the conditions J; =¢;, A; (u) = k;.

Equations (1.8) have an equivalent representation in the form of the Lax matrix equation,
which depends on an arbitrary spectral parameter E

L'=IL,Ql, L=BE*4+ ME+u, Qwmw—EI (1.13)

Integrals (1.12) are the coefficients at E? in the expansion of the functions Tr (L¥(E))
and Tr (L3%)) (which by virtue of (1.13) are independent of t) in powers of the parameter E.
Owing to the existence of representation (1.13) the Euler equations are explicitly integrable
with respect to theta~functions of Riemannian surfaces specified by the equations R(E, w) =
det (L () — w-1) = 0. The Lax equations with a spectral parameter were studied (in connection
with other problems) in /5, 6/.

Note that in the integrable Klebsch case /1, 2, 4/ which describes the solution of Brun's
problem /3/ (¢ = a(s')?), the dynamics of trajectories is quasiperiodic on two-dimensional tc?ri
T In little known publications by Brun /7, 8/ two supplementary integrals of the equations
of a solid rotating in a filed with a general quadratic potential of the form (1.4) are



indicated. Goryachev /9/ found two supplement#ry integrals in the case of potential ¢(z) =

a ((z1)? — (z%?). In these works the Hamiltonian structure of Euler's equations (1.2), and the
guestion of their Liouville integrability was not considered. 1In the problem investigated
here the combined level of all six first integrals J; =1¢, & (u) = k; is a three-dimensional
manifold, as in the most general case of Euler-Poisson equations. Thus, unlike the integrable
Euler-Poisson equations, the method of the last Jacobi multiplier is not applicable.

The first proof of Theorem 1, different from the one given here, appeared in /10/. 1In
the present paper in addition to the Liouville proof of integrability based on investigation
of the Hamiltonian structure of (1.8), a proof is obtained of the integrability of these
equations in terms of Riemann theta-functions, which is a corollary of the representation of
system (1.8) in the forms (1.13). The explicit formulae expressing the angular velocities
of the solid e!() in terms of Riemann theta-functions were derived in /11/.

The general equations (1.2) which describe the rotation of a solid around a fixed point
in a Newtonian field are Euler equations in the conjugate space L,;,* to the Lie algebra L,,,
whose commutators in the basis X, Y/ (i,j. % a, p =1,2,3) have the form

(X, X)) = e Xy [Xi Y =l [V, Yol =0 (1.14)

Equations (1.2) have an energy integral J, =2"1M,w)— U (a,$,7) and six geometric
integrals J,, ..., J7, which determine the paired constant scalar products of the vectors
@, B, y. The combined level of the integrals Jy, ..., J: is a submanifold of V,® =T (SO (3)).
Equations (1.2) on V,® are of Hamiltonian form with the Hamiltonian J, which is of simplectic
structure determined by (1.10)—(1.14). Equations (l.2) are the first example of the physically
important Euler equations of the Lie algebras, where the non-linearity of the potential
function U in the Hamiltonian J; may be as complicated as desired.

2. Integrable cases of a solid rotating round a fixed point in a force
field with a quadratic potential. Consider the rotation of a solid T round a fixed
point in a force field with the potential

o= 2 Gap (|2 ]) 2%28, |z |= (2" + (2?) + (2P)" (2.1)

a, fe=1
where aqg ([x|) are arbitrary differential functions of the variable |z }. The Newtonian

potentials of the form (2.1) that satisfy the Laplace equation Ag = 0, are determined by
the formulae

3 3

= ( > caﬂz"‘zﬁ) | x|+ D bapzoat 4 c|x|?
o, f=1 a,B=1

e F cop F €35 = 0, by o+ by + by =0

We introduce the following four-component tensor symmetric about two pairs of indices
a,f and i,k which generalizes the inertia tensor [, (1.3)

3

Topir = S p(t)ap(r]) (Bik 2 (r'y2— r‘r") drtdr®drd (2.2)
T

{m)
Theorem 2. If the tensor Teagix can be represented in the form
Tapir = Aaplix + Bopbin + SusCir (2.3)

where A4, B, C are arbitrary symmetric matrices, the equations of rotation of the solid T
around a fixed point 0 (2 = 0) in a field with potential (2.l1) is completely Liouville
integrable.

If agg (| z |) = const, then conditions (2.3) are obviously satisfied, and hence Theorem 2
generalizes Theorem 1. 1If the solid T is a sphere whose density is

py=p e/ 1rDpa (I }) (2.4)

then conditions (2.3) are satisfied for arbitrary functions as (Ix|]) (then By =Cy=0),
hence the equations of rotation of such a solid in a field with an arbitrary potential of
form (2.1) are completely Liouville integrable.

Let the orthogonal matrix Q (t) define the transformation from the Lagrangian coordinates
r¥ attached to the frame of reference S in Euler coordinates gz% z' = Q' ({)r* (recurrent
indices indicate summation everywhere). By definition we have g = Qu, where @ is the
angular velocity matrix.

In the system S the potential (2.1) has the form

o= Y, w0, Qs

a, Bt



The components of the moment of forces acting on the solid T in a field with potential
¢ (2.2) are given by

K, = § (rx o35 drtar ar— { eumrmpacg () Que0Pridrtartart (2.5)
T

The skew symmetric matrix K which by the isomorphism (1.6) corresponds to the vector of
the moment of forces (2.5) has the elements

Kp = —eipki = TopjQy®Qf — TepriQ,5Q, (2.6)
Substituting (2.3) into formulae (2.6), we obtain
Kp = 134080:°QF — InAasQi20F (2.7

We introduce the matrix u = Q'4Q. In matrix form (2.7) means that X = Ju — ul = —[u, /]
Hence the egquations that define the angular momentum matrix and (by virtue of @ = Qu) of
matrix u have the form

M =M, ol=lu 1, v =lu ol (2.8)

Equations (2.8) completley define the rotation of a solid in a field with potential (2.1),
if conditions (2.3) are satisfied. They obviously are the same as (1.8), and are therefore
completely Liouville integrable.

3. The integrable case of the rotation of a magnetized solid in a uniform
gravitational and magnetic field. cConsider the rotation of the selid T round a fixed
point O, whose magnetic moment m is constant in a uniform gravitational and magnetic field.
Let us assume that the inertia tensor of the solid in the rotating frame of reference S is
diagonal with components I, [g. I; The directions of the uniform gravitational and magnetic
field stress vectors are defined by the vectors 4 and § of unit length; the vecter r defines
the position of the centre of mass (in system §), m 1§ the mass of the solid, and g anc¢ h
are the intensities of the gravitational and magnetic fields; M and ¢ are the angular
momentum and angular velocity vector M, = I,w,. The equations of motion in system S have
the form

(o]
—

M=Mxo-mgrxy+hmx0d v=yx0 6=0x0 {

The equations of rotation about a fixed pcint of a fully charged solid with total charge
g in a constant gravitational and electric field arc of the same form, except that instead
of h we have E (the electric field strength), and instead of m we have the dipcle moment
vector

d——‘-So(r)r drldr dr?
T

where ©(r) is the electric charge density.
Equaticns (3.1) have the following first integrals:
h=21Me)—mg(.y)—hmb), Ji=(V.7V) {
Jy=(6,8), Ji=1(1.8)
The integral J, is identical with the total energy of the solid. The manifold V¥ defined
by conditions J, — ¢, J;= c¢; J=r¢, 1is generally homeomorphic to the product Ve = R3 X
§0(3) = T (SO (3)).
Equations (3.2) are the Euler equations in the conjugate space Ly* of the Lie algebra
L,. whose commutators in the basis X, Y,/ have the form (1.14), where a,f =1,2. The three-
dimensional vectors M, y, & belong to the subspaces X,* Y,/ Y** respectively.
The Poisson brackets of the functions in space L? are defined by the formulae (1.10).
For the basis functions AM;, y;, 6; we obtain

as
.
]

(M. M;}=epnMy (M, v}=tinvi, (M. 65} = &b (3.3)
{¥:, v} = {8;. 8;} = {v: 6} =0
By virtue of (1.10) the Poisson brackets of arbitrary pclynomials of M;, y;, 6, are
calculated by the Leibniz rule using (3.3). The functions J, J, J, cancel the Poissonbrackets
in (3.3); the manifolds of their levels V* have a non-degenerate simplectic structure (these
structures are similar to those in /12/ for the Kirchhoff equations). Equations {(3.1) have
the Hamiltonian form
M= (M, HY, v/ ={y H), & = {6 H)} (3.4)

where the Hamiltonian H=1J,.

Theorem 3. Equaties (3.l1) with the conditions



mgr = (R, 0,0), hm = (0;Q, 0), I, =1, = 2], (3.5)
have the first integral

Jo = 2,2 + 22 (3.6)
2, = M2 — M2 + 4Ry, — 415Q8,, 2z, = MM, + 4I3Ry, + 41508,

on the manifold Jy;=0 (2, =0, z; = 0) equations (3.1) have the supplementary integral Jg =
{21, 2,} , and are completely Liouville integrable.
A direct check shows that (3.1) yields the equations

2 = {2y, H) = I57' M2y, 23 = {25, H} = —137'Myz, (3.7

that prove the existence of integral J,. Equations (3.7) are equivalent to the single equation
2 = —ily" 1Mz, where z =3z, + iz, and Jo = |z |2

The manifold of level Jy=0(z,=0,z,= () in intersection with the submanifolds of V8
determines the simplectic four-dimensional submanifolds V¢ (the induced simplectic structure
is non-degenerate). System (3.1)~(3.4) has on submanifolds V4 the supplementary first integral

Je = {21, 23} = My (M2 + M2 + 4IsRM 195 + 41,0M ;b) (3.8)
In fact, by virtue of the Jacobi identity and (3.7), we have

Jo = {{z1, 2.}, H} = — {{z, H}, 2.} + {{z), H}, 33} =
I {Ms, 2} + I572{My3, 25} = I37 22, M My — 20 (M *—M,7)

Consequently on submanifolds Vi(z; =2, =0, J, = ¢ J3 =¢3 Jui=¢,) we have Jg =0. Thus
the Hamiltonian system (3.1)—(3.4) has on invariant submanifolds V¢4 a supplementary manifold
J¢ and is completely Liouville integrable. When there is no magnetic field (Q = 0). the
integrable case of (3.1) becomes the classic Kovalevskaya case.

In the integrable case obtained the potential function U= Ry; + @8, (see (1.2)) essen-
tially depends on three Euler angles ¢, %, 0. Integrable cases in which the function U depends
only on two Euler angles ¢, 0, were investigated in /13, 14/.
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